资源类型

期刊论文 693

会议视频 36

会议专题 1

年份

2024 2

2023 137

2022 117

2021 84

2020 48

2019 45

2018 29

2017 29

2016 28

2015 25

2014 20

2013 17

2012 26

2011 26

2010 23

2009 18

2008 16

2007 12

2006 3

2003 1

展开 ︾

关键词

碳中和 24

能源 10

二氧化碳 6

低碳经济 6

环境 6

低碳发展 4

低碳 3

天然气 3

CCS 2

产业结构 2

光催化 2

化学吸收 2

化石能源 2

协同效应 2

压力容器技术 2

固体氧化物燃料电池 2

土地利用变化 2

情景分析 2

碳基燃料 2

展开 ︾

检索范围:

排序: 展示方式:

Hierarchically porous zeolites synthesized with carbon materials as templates

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1444-1461 doi: 10.1007/s11705-021-2090-6

摘要: Hierarchically porous zeolites are promising candidates in catalytic conversion of relatively bulky molecules, and their syntheses have attracted significant attention. From both industrial and scientific perspectives, different carbon materials have been widely employed as hard templates for the preparation of hierarchically porous zeolites during the past two decades. In this review, the progress in synthetic strategies using carbon materials as templates is comprehensively summarized. Depending on the affinity between the carbon templates and zeolite precursors, the substantial strategies for synthesizing hierarchical zeolites are introduced in direct templates and indirect templates. Direct templates methods, by which the carbon materials are directly mixed with precursors gel as hard templates, are first reviewed. Then, we discuss the indirect templates method (crystallization of carbon-silica composites), by which the carbon is produced by in situ pyrolysis of organic-inorganic precursors. In addition, the technique of encapsulating metal species into zeolites crystals with the assistance of carbon templates is also discussed. In the conclusion part, the factors affecting the synthesis of carbon-templated hierarchically porous zeolites are remarked. This review is expected to attract interest in the synthesis strategies of hierarchically porous zeolites, especially cost-effective and large-scale production methodologies, which are essential to the industrial application of hierarchical zeolites.

关键词: hierarchical zeolites     carbon materials     direct templates     indirect templates     carbon-silica composites    

Study on the crystal morphology and melting behavior of isothermally crystallized composites of shortcarbon fiber and poly(trimethylene terephthalate)

Mingtao RUN, Hongzan SONG, Yanping HAO

《化学科学与工程前沿(英文)》 2009年 第3卷 第3期   页码 255-264 doi: 10.1007/s11705-009-0008-9

摘要: The spherulites of the short carbon fiber(SCF)/poly (trimethylene terephthalate) (PTT) composites formed in limited space at designed temperatures, and their melting behaviors were studied by the polarized optical microscopy, atomic force microscopy (AFM), and scanning electron microscopy (SEM), respectively. The results suggest that SCF content, isothermal crystallization temperatures, and the film thicknesses influence the crystal morphology of the composites. The dimension of the spherulites is decreased with increasing SCF content, but whether banded or nonbanded spherulites will form in the composites is not dependent on SCF content. However, the crystal morphology of the composites depends strongly on the temperature. When the isothermal crystallization temperatures increase from 180°C to 230°C, the crystal morphology of SCF/PTT composites continuously changes in the following order: nonbanded → banded → nonbanded spherulites. Discontinuous circle lines form in the film when the film thickness increases from 30 to 60 μm. Basing on the SEM observation, it is found that these circle lines are cracks formed due to the constriction difference of the different parts of the spherulites. These cracks are formed when the film is cooled from the isothermal crystallization temperature to the room temperature at a slow cooling rate; while they will disappear gradually at different temperatures in the heating process. The crack will appear/disappear first around the center of the spherulite when the film was cooled/heated. The nontwisted or slightly twisted lamellas will reorganize to form highly twisted lamellas inducing apparent banded texture of the spherulites.

关键词: poly(trimethylene terephthalate)     short carbon fiber     banded spherulites     crack    

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functionsof CuS cores with red emitting carbon dots

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 2144-2155 doi: 10.1007/s11705-023-2362-4

摘要: This study introduces multifunctional silica nanoparticles that exhibit both high photothermal and chemodynamic therapeutic activities, in addition to luminescence. The activity of the silica nanoparticles is derived from their plasmonic properties, which are a result of infusing the silica nanoparticles with multiple Cu2–xS cores. This infusion process is facilitated by a recoating of the silica nanoparticles with a cationic surfactant. The key factors that enable the internal incorporation of the Cu2–xS cores and the external deposition of red-emitting carbon dots are identified. The Cu2–xS cores within the silica nanoparticles exhibit both self-boosting generation of reactive oxygen species and high photothermal conversion efficacy, which are essential for photothermal and chemodynamic activities. The silica nanoparticles’ small size (no more than 70 nm) and high colloidal stability are prerequisites for their cell internalization. The internalization of the red-emitting silica nanoparticles within cells is visualized using fluorescence microscopy techniques. The chemodynamic activity of the silica nanoparticles is associated with their dark cytotoxicity, and the mechanisms of cell death are evaluated using an apoptotic assay. The photothermal activity of the silica nanoparticles is demonstrated by significant cell death under near-infrared (1064 nm) irradiation.

关键词: copper sulfide nanoparticles     chemodynamic therapy     photothermal therapy     carbon dots     silica nanoparticles    

A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application

Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI

《能源前沿(英文)》 2017年 第11卷 第3期   页码 245-253 doi: 10.1007/s11708-017-0492-4

摘要: High activity catalyst with simple low-cost synthesis is essential for fuel cell commercialization. In this study, a facile procedure for the synthesis of cube-like Pt nanoparticle (Pt ) composites with high surface area carbon supports is developed by mixing precursor of Pt with carbon supports in organic batches, hence, one pot synthesis. The Pt grow with Vulcan XC-72 or Ketjen black, respectively, and then treated for 5.5 h at 185ºC (i.e., Pt /V and Pt /K). The resulting particle sizes and shapes are similar; however, Pt /K has a larger electrochemical active surface area (EASA) and a remarkably better formic acid (FA) oxidation performance. Optimization of the Pt /K composites leads to Pt /K that has been treated for 10 h at 185ºC. With a larger EASA, Pt /K is also more active in FA oxidation than the other Pt /K composites. Impedance spectroscopy analysis of the temperature treated and as-prepared (i.e., untreated) Pt /K composites indicates that Pt /K is less resistive, and has the highest limiting capacitance among the Pt /K electrodes. Consistently, the voltammetric EASA is the largest for Pt /K. Furthermore, Pt /K is compared with two commercial Pt/C catalysts, Tanaka Kikinzoku Kogyo (TKK), and Johnson Matthey (JM)Pt/C catalysts. The TKK Pt/C has a higher EASA than Pt /K, as expected from their relative particles sizes (3–4 nm vs. 6–7 nm for Pt /K), however, Pt /K has a significantly better FA oxidation activity.

关键词: synthesis     cube-like Pt     Pt/C composite     catalyst     impedance    

Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporouscomposites

Huining HE, Junxiao YE, Jianyong SHENG, Jianxin WANG, Yongzhuo HUANG, Guanyi CHEN, Jingkang WANG, Victor C YANG

《化学科学与工程前沿(英文)》 2013年 第7卷 第1期   页码 9-19 doi: 10.1007/s11705-013-1306-9

摘要: Oral insulin delivery has received the most attention in insulin formulations due to its high patient compliance and, more importantly, to its potential to mimic the physiologic insulin secretion seen in non-diabetic individuals. However, oral insulin delivery has two major limitations: the enzymatic barrier that leads to rapid insulin degradation, and the mucosal barrier that limits insulin’s bioavailability. Several approaches have been actively pursued to circumvent the enzyme barrier, with some of them receiving promising results. Yet, thus far there has been no major success in overcoming the mucosal barrier, which is the main cause in undercutting insulin’s oral bioavailability. In this review of our group’s research, an innovative silica-based, mucoadhesive oral insulin formulation with encapsulated-insulin/cell penetrating peptide (CPP) to overcome both enzyme and mucosal barriers is discussed, and the preliminary and convincing results to confirm the plausibility of this oral insulin delivery system are reviewed. In vitro studies demonstrated that the CPP-insulin conjugates could facilitate cellular uptake of insulin while keeping insulin’s biologic functions intact. It was also confirmed that low molecular weight protamine (LMWP) behaves like a CPP peptide, with a cell translocation potency equivalent to that of the widely studied TAT. The mucoadhesive properties of the produced silica-chitosan composites could be controlled by varying both the pH and composition; the composite consisting of chitosan (25 wt-%) and silica (75 wt-%) exhibited the greatest mucoadhesion at gastric pH. Furthermore, drug release from the composite network could also be regulated by altering the chitosan content. Overall, the universal applicability of those technologies could lead to development of a generic platform for oral delivery of many other bioactive compounds, especially for peptide or protein drugs which inevitably encounter the poor bioavailability issues.

关键词: insulin     cell penetrating peptide     mucoadhesive composites     oral delivery    

Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application

Jian LI,Caichao WAN

《农业科学与工程前沿(英文)》 2015年 第2卷 第4期   页码 341-346 doi: 10.15302/J-FASE-2015082

摘要: Electromagnetic wave pollution has attracted extensive attention because of its ability to affect the operation of electronic machinery and endanger human health. In this work, the environmentally-friendly hybrid aerogels consisting of cellulose and multi-walled carbon nanotubes (MWCNTs) were fabricated. The aerogels have a low bulk density of 58.17 mg·cm . The incorporation of MWCNTs leads to an improvement in the thermal stability. In addition, the aerogels show a high electromagnetic interference (EMI) value of 19.4 dB. Meanwhile, the absorption-dominant shielding mechanism helps a lot to reduce secondary radiation, which is beneficial to develop novel eco-friendly EMI shielding materials.

关键词: cellulose aerogels     carbon nanotubes     electromagnetic interference shielding     composites    

Acid-treated carbon nanotubes and their effects on mortar strength

M. ELKASHEF,K. WANG,M. N. ABOU-ZEID

《结构与土木工程前沿(英文)》 2016年 第10卷 第2期   页码 180-188 doi: 10.1007/s11709-015-0325-7

摘要: In the present study, multi-walled carbon nanotubes (MWCNTs) were treated in an acidic mixture solution, made with nitric and sulfuric acids in a ratio of 3:1 by volume. The durations of the treatment were 100 and 180 min. The defects of these treated MWCNTs were examined using Raman spectroscopy. The attachment of hydroxyl functional groups to the walls of the MWCNTs were verified using FTIR spectroscopy. The dispersion of CNTs with acid treatment is assessed using UV-Vis spectroscopy and Scanning Electron Microscopy (SEM). The results indicate that the duration of the acid treatment has significant effect on both the degree of defects and functionality of the MWCNT. The compressive strength of mortar increased with the addition of the acid-treated MWCNTs; however, no appreciable difference was noted for the two treatment durations under this study.

关键词: carbon nanotubes     concrete     composites     nanomaterials     cement    

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

《结构与土木工程前沿(英文)》 2019年 第13卷 第4期   页码 821-830 doi: 10.1007/s11709-019-0518-6

摘要: Many studies have evaluated the effects of additives such as nano-silica (NS), micro-silica (MS) and polymer fibers on optimizing the mechanical properties of concrete, such as compressive strength. Nowadays, with progress in cement industry provides, it has become possible to produce cement type I with strength classes of 32.5, 42.5, and 52.5 MPa. On the one hand, the microstructure of cement has changed, and modified by NS, MS, and polymers; therefore it is very important to determine the optimal percentage of each additives for those CSCs. In this study, 12 mix designs containing different percentages of MS, NS, and polymer fibers in three cement strength classes(CSCs) (32.5, 42.5, and 52.5 MPa) were designed and constructed based on the mixture method. Results indicated the sensitivity of each CSCs can be different on the NS or MS in compressive strength of concrete. Consequently, strength classes have a significant effect on the amount of MS and NS in mix design of concrete. While, polymer fibers don’t have significant effect in compressive strength considering CSCs.

关键词: mixture method     compressive strength     nano-silica     micro-silica     polypropylene fibers    

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

《化学科学与工程前沿(英文)》 2008年 第2卷 第2期   页码 127-134 doi: 10.1007/s11705-008-0033-0

摘要: A series of “guava-like” silica/polyacrylate nanocomposite particles with close silica content and different grafting degrees were prepared via mini-emulsion polymerization using 3-(trimethoxysilyl)propyl methacrylate (TSPM) modified silica/acrylate dispersion. The silica/polyacrylate composite particles were melt-mixed with unfilled polyacrylate (PA) resin to prepare corresponding silica/polyacrylate molded composites and the dispersion mechanism of these silica particles from the “guava-like” composite particles into polyacrylate matrix was studied. It was calculated that about 110 silica particles were accumulated in the bulk of every silica/polyacrylate composite latex particle. Both the solubility tests of silica/polyacrylate composite latex particles in tetrahydrofuran (THF) and the section transmission electron microscope (TEM) micrographs of silica/polyacrylate molded composites indicated that the grafting degree of silica particles played a crucial role in the dispersion of silica/polyacrylate composite particles into the polyacrylate matrix. When the grafting degree of polyacrylate onto silica was in a moderate range (ca. 20%–70%), almost all of silica particles in these “guava-like” composite particles were dispersed into the polyacrylate matrix in a primary-particle-level. However, at a lower grafting degree, massive silica aggregations were found in molded composites because of the lack of steric protection. At a greater grafting degree (i.e., 200%), a cross-linked network was formed in the silica/polyacrylate composite particles, which prevented the dispersion of composite particles in THF and polyacrylate matrix as primary particles.

关键词: silica/polyacrylate composite     cross-linked network     –70     guava-like     TEM    

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1581-1592 doi: 10.1007/s11705-023-2327-7

摘要: Herein, Cu–Al bimetallic oxide was synthesized and mixed with mesoporous silica spheres via a simple hydrothermal method. The prepared sample was then analyzed and employed to activate potassium peroxydisulfate for bisphenol A removal. Based on the results of X-ray diffraction, scanning electron microscopy, and energy dispersion spectroscopy, Cu–Al bimetallic oxide was determined as CuO-Al2O3, and mesoporous silica spheres were found around the these particles. At 30 min, a bisphenol A degradation level of 90% was achieved, and it remained at over 60% after five consecutive cycles, indicating the catalyst’s superior capacity and stability. In terms of removal performance, the radical pathway (including SO4•‒, OH •, and O2•‒) and singlet oxygen (1O2) played minor roles, while electron migration between bisphenol A, potassium peroxydisulfate, and the catalyst played a dominant role. The introduction of Al2O3 promoted the formation of surface oxygen vacancies, which improved ligand complex formation between potassium peroxydisulfate and the catalyst, thereby facilitating electron migration. Furthermore, mesoporous silica spheres augment not only enhanced bisphenol A adsorption but also alleviated Cu leaching. Overall, this work is expected to provide significant support for the rational development of catalysts with high catalytic activity for persulfate activation via surface electron migration.

关键词: Cu–Al bimetallic oxides     mesoporous silica spheres     peroxydisulfate     bisphenol A    

Mixed mode properties of CNT reinforced composites using Arcan test rig

Jacob MUTHU

《结构与土木工程前沿(英文)》 2015年 第9卷 第4期   页码 397-404 doi: 10.1007/s11709-015-0321-y

摘要: Composite materials reinforced with carbon nanotubes were mechanical tested using Arcan test rig under Mode-I, Mode-II and mixed mode loading conditions to obtain their fracture properties. The butterfly composite specimens were fabricated with 0.02, 0.05 and 0.1 wt % CNTs. The polyester/CNT composite was fabricated using VRTM (Vacuum Resin Transfer Molding) where the CNTs were first functionalised to reach an optimum properties. Arcan test rig was designed and fabricated to work with the Shimadzu testing machine. The results show that the functionalised CNTs have improved the fracture behavior by acting as bridge between the cracked face. In addition, the fracture properties were not improved for the higher weight fraction of 0.1 wt% CNTs.

关键词: CNT     composites     Arcan test rig     stress intensity factor    

Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive

Qingsheng YANG, Fang XU

《机械工程前沿(英文)》 2009年 第4卷 第3期   页码 284-288 doi: 10.1007/s11465-009-0067-0

摘要: Fiber reinforced polymer (FRP) composites exhibit nonlinear and hyperelastic characteristics under finite deformation. This paper investigates the macroscopic hyperelastic behavior of fiber reinforced polymer composites using a micromechanical model and finite deformation theory based on the hyperelastic constitutive law. The local stress and deformation of a representative volume element are calculated by the nonlinear finite element method. Then, an averaging procedure is used to find the homogenized stress and strain, and the macroscopic stress-strain curves are obtained. Numerical examples are given to demonstrate hyperelastic behavior and deformation of the composites, and the effects of the distribution pattern of fibers are also investigated to model the mechanical behavior of FRP composites.

关键词: composites     hyperelastic     finite deformation     homogenization     micromechanics    

Facile controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/rGO composites as high-performance

Cehuang FU, Shuiyun SHEN, Ruofei WU, Xiaohui YAN, Guofeng XIA, Junliang ZHANG

《能源前沿(英文)》 2022年 第16卷 第4期   页码 607-612 doi: 10.1007/s11708-021-0798-0

摘要: In this paper, a facile strategy is proposed to controllably synthesize mesoporous Li4Ti5O12/C nanocomposite embedded in graphene matrix as lithium-ion battery anode via the co-assembly of Li4Ti5O12 (LTO) precursor, GO, and phenolic resin. The obtained composites, which consists of a LTO core, a phenolic-resin-based carbon shell, and a porous frame constructed by rGO, can be denoted as LTO/C/rGO and presents a hierarchical structure. Owing to the advantages of the hierarchical structure, including a high surface area and a high electric conductivity, the mesoporous LTO/C/rGO composite exhibits a greatly improved rate capability as the anode material in contrast to the conventional LTO electrode.

关键词: Li4Ti5O12     phenolic-resin-based carbon     mesoporous composite     graphene    

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

《机械工程前沿(英文)》 2022年 第17卷 第2期 doi: 10.1007/s11465-022-0680-8

摘要: Fiber-reinforced composites have become the preferred material in the fields of aviation and aerospace because of their high-strength performance in unit weight. The composite components are manufactured by near net-shape and only require finishing operations to achieve final dimensional and assembly tolerances. Milling and grinding arise as the preferred choices because of their precision processing. Nevertheless, given their laminated, anisotropic, and heterogeneous nature, these materials are considered difficult-to-machine. As undesirable results and challenging breakthroughs, the surface damage and integrity of these materials is a research hotspot with important engineering significance. This review summarizes an up-to-date progress of the damage formation mechanisms and suppression strategies in milling and grinding for the fiber-reinforced composites reported in the literature. First, the formation mechanisms of milling damage, including delamination, burr, and tear, are analyzed. Second, the grinding mechanisms, covering material removal mechanism, thermal mechanical behavior, surface integrity, and damage, are discussed. Third, suppression strategies are reviewed systematically from the aspects of advanced cutting tools and technologies, including ultrasonic vibration-assisted machining, cryogenic cooling, minimum quantity lubrication (MQL), and tool optimization design. Ultrasonic vibration shows the greatest advantage of restraining machining force, which can be reduced by approximately 60% compared with conventional machining. Cryogenic cooling is the most effective method to reduce temperature with a maximum reduction of approximately 60%. MQL shows its advantages in terms of reducing friction coefficient, force, temperature, and tool wear. Finally, research gaps and future exploration directions are prospected, giving researchers opportunity to deepen specific aspects and explore new area for achieving high precision surface machining of fiber-reinforced composites.

关键词: milling     grinding     fiber-reinforced composites     damage formation mechanism     delamination     material removal mechanism     surface integrity     minimum quantity lubrication    

Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites

《结构与土木工程前沿(英文)》 2022年 第16卷 第2期   页码 145-160 doi: 10.1007/s11709-022-0806-4

摘要: In this study, sprayable strain-hardening fiber-reinforced cementitious composites (FRCC) were applied to strengthen the concrete slabs in a concrete-face rockfill dam (CFRD) for the first time. Experimental, numerical, and analytical investigations were carried out to understand the flexural properties of FRCC-layered concrete slabs. It was found that the FRCC layer improved the flexural performance of concrete slabs significantly. The cracking and ultimate loads of a concrete slab with an 80 mm FRCC layer were 132% and 69% higher than those of the unstrengthened concrete slab, respectively. At the maximum crack width of 0.2 mm, the deflection of the 80-mm FRCC strengthened concrete slab was 144% higher than that of the unstrengthened concrete slab. In addition, a FE model and a simplified analytical method were developed for the design and analysis of FRCC-layered concrete slabs. Finally, the test result of FRCC leaching solution indicated that the quality of the water surrounding FRCC satisfied the standard for drinking water. The findings of this study indicate that the sprayable strain-hardening FRCC has a good potential for strengthening hydraulic structures such as CFRDs.

关键词: strain-hardening cementitious composites     engineered cementitious composites     sprayable     shotcrete     strengthening     concrete-face rockfill dam     digital image correlation    

标题 作者 时间 类型 操作

Hierarchically porous zeolites synthesized with carbon materials as templates

期刊论文

Study on the crystal morphology and melting behavior of isothermally crystallized composites of shortcarbon fiber and poly(trimethylene terephthalate)

Mingtao RUN, Hongzan SONG, Yanping HAO

期刊论文

Silica-based nanoarchitecture for an optimal combination of photothermal and chemodynamic therapy functionsof CuS cores with red emitting carbon dots

期刊论文

A facile synthesis of high activity cube-like Pt/carbon composites for fuel cell application

Reza B. MOGHADDAM, Samaneh SHAHGALDI, Xianguo LI

期刊论文

Overcoming oral insulin delivery barriers: application of cell penetrating peptide and silica-based nanoporouscomposites

Huining HE, Junxiao YE, Jianyong SHENG, Jianxin WANG, Yongzhuo HUANG, Guanyi CHEN, Jingkang WANG, Victor C YANG

期刊论文

Cellulose aerogels decorated with multi-walled carbon nanotubes: preparation, characterization, and application

Jian LI,Caichao WAN

期刊论文

Acid-treated carbon nanotubes and their effects on mortar strength

M. ELKASHEF,K. WANG,M. N. ABOU-ZEID

期刊论文

Optimizing the compressive strength of concrete containing micro-silica, nano-silica, and polypropylene

Fatemeh ZAHIRI, Hamid ESKANDARI-NADDAF

期刊论文

Dispersion of “guava-like” silica/polyacrylate nanocomposite particles in polyacrylate matrix

QI Dongming, YANG Lei, WU Minghua, SHAO Jianzhong, BAO Yongzhong

期刊论文

Enhanced activation of persulfate using mesoporous silica spheres augmented Cu–Al bimetallic oxide particles

期刊论文

Mixed mode properties of CNT reinforced composites using Arcan test rig

Jacob MUTHU

期刊论文

Numerical modeling of nonlinear deformation of polymer composites based on hyperelastic constitutive

Qingsheng YANG, Fang XU

期刊论文

Facile controlled synthesis of hierarchically structured mesoporous Li4Ti5O12/C/rGO composites as high-performance

Cehuang FU, Shuiyun SHEN, Ruofei WU, Xiaohui YAN, Guofeng XIA, Junliang ZHANG

期刊论文

Fiber-reinforced composites in milling and grinding: machining bottlenecks and advanced strategies

期刊论文

Strengthening of the concrete face slabs of dams using sprayable strain-hardening fiber-reinforced cementitious composites

期刊论文